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Construction and properties of fractal trees with tunable dimension:
The interplay of geometry and physics
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In this paper, we emphasize three different techniques for the growth of fractal trees with a desired fractal
dimensionD;. The three different growths are due to the influencé)ostretched branche§j) dead ends, or
(iii ) a variable branching rate. Several examples are given. We point out that geometrical and physical prop-
erties(skeleton dimension, percolation exponents, self-avoiding walkactal trees depend strongly on their
type. The most striking result is that the critical exponents at the percolation transition are nonuniversal since
they depend on the tree type. The critical exponents dependDorior trees of types(ii) and (iii).
[S1063-651%97)03201-1

PACS numbe(s): 05.40:+j, 61.43.Hv, 68.35.Rh

I. INTRODUCTION within a distancel from the origin of a fractal tree scales as
LPt. The exponenb; is the fractal dimension of the tree and
Loopless branched structures are often encountered in nahould be larger than or equal to one. Following this defini-
ture, such as lung, coral, starbust polymers, phylogenetition of a fractal tree, the Cayley tree has thus an asymptoti-
trees, etc. The kinetic growth of such branched structuresally infinite dimensionality in the sense that the total num-
with no loop is also used to describe dynamical processeler of sites within a distanck from the origin of the tree
such as fragmentatiofl], demography1], biological evo- increases exponentially with.
lution [2,3], off-lattice diffusion-limited aggregatiofDLA) The skeleton of a tree is defingdl2] as the set of sites
[4,5], physiology[6], etc. Branched structures and/or pro- belonging to the shortest paths from the root of the tree to the
cesses are also used to elaborate mean-field theories suchsites in a shell at a distange The important parameter char-
for percolation[7,8] or for self-organized criticalityf9]. In  acterizing such a skeleton is the fractal skeleton dimension
order to describe these treelike structures in which branchin@? [12]. Skeleton substructures are important in characteriz-
processes take place, self-similarity and multifractality coning various physical properties such as diffusion, elasticity,
cepts are often usgdO0]. and resistivity.
The aim of the present paper is essentially to discuss both The tree structure is characterized by three essential local
geometrical and physical properties of three different typeparameters, which ar@) the length of the branchése., the
of fractal trees, which are constructed through a growth prodistance between two neighboring sjtei) the activity of
cess in high dimensions. The present work rationalizes thehe growth sites, andii) the branching rate. For the usual
notion of fractal trees and emphasizes some interesting fe€ayley tree, the branching rate and the length of the seg-
tures. ments are constant parameters during the whole growth, and
the branching takes place on all sites simultaneously. We
Il. CONSTRUCTION OF FRACTAL TREES will show below that by modifying each parameter during
the tree growth, one can obtain a fractal tree with a desired

The most well-known tree is probably the Cayley treefractal dimensionD;. The skeletons of the resulting trees
[11]. This tree is generated as follows: the end of eachy; also be discussed.

branch is egrowth sitefrom whichz branches of unit length (i) Stretched treeslf one deforms the Cayley tree by

grow out. Repeating indefinitely the latter growth processgyretching the branches, one can obtain a self-similar tree if
this leads to the formation of a hierarchical structure as sche-

matically drawn in Fig. 1 where the branching-growth pro-
cess has been started from a single branch. The number of
sitesn(g) in the so-calledgth shell is an exponential func-
tion of z, i.e.,n(g)=2%.

One should remark that the notion of distartakso called
the chemical distanges only defined along the tree and
cannot necessarily be connected with the Euclidian distance
of the embedding space. All trees considered herein are of
Cayley type; i.e., they are embedded in an infinite Euclidian
space. Following this point of view, the number of sites

*Electronic address: vandewal@gw.unipc.ulg.ac.be FIG. 1. The first through fifth generations of an ordinary Cayley
TElectronic address: ausloos@gw.unipc.ulg.ac.be tree with branching rate=2.
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FIG. 2. The first through fourth generations of a stretched Cay-
ley tree withD;=2 and branching rate=2. Fractality is obtained

by stretching the length of the branches. FIG. 3. The first through fifth generations of a trimmed Cayley

tree withD;=2 and branching rate=2. Fractality is obtained by
and only if the length of the successive segments connectingnposing a power-law distribution of sites per shell. In particular
the branching points is a geometrical progression with amere the number of branching points on successive shells is incre-
argumenig=1. Stretched Cayley trees are ordered hierarchimented by one, giving a fractal dimensitn=2.
cal structures, which are useful for theoretical developments
as, for example, in the study of nonanomalous diffusion oryiving an upper limit forD; as a function of the branching
fractal objects/13]. The chemical dimension or the fractal ratio z. Figure 3 shows the first five stages in the construction

dimensionD¢ of a stretched Cayley trees then given by of a trimmed Cayley tree. In Fig. 3, the number of branching
points on successive shells is incremented by one, giving for

In(z) this tree a dimensio;=2, i.e., the upper limit dimension

Di=1+ W D fora branching ratg=2. One should remark that a similar

“trimmed” technique [14,15 has been previously studied
for growing specific fractal trees embedded in a Euclidian
space of finite dimensionalitd. The fractal dimension of
these trees is obviously bounded by the space dimensionality
d in contrast with the present trimmed trees for which the
fractal dimension is bounded by the branching mthrough

which ranges from 1 te+ for any z values by tuning the
stretching parameteq. Figure 2 exhibits such a stretched
Cayley tree for which the length of the segments is a geo
metrical progression of argumeqt=2. The tree of Fig. 2 is
thus fractal with a dimensioB;=2 sincez=2. Forgq=1, a
Cayley tree is obviously recovered. The skeleton of aEa- (3). )

stretched tree is trivially equivalent to the tree itself. Thus, !N contrast with the stretched trees, the skeleton of a

the fractal dimension of the skelet@7=D; is also given by trimmed fractal tree is not equivalent to the tree due to the
Eq. (1) f presence of dead ends. A previous analytical sfudy} has

(i) Trimmed trees In a second type of fractal growth shown that the dimension of the skeleton is given by

technique, a branching process with a constant branching 1 for D.<2
ratez can be considered but sometimes imposiegd ends DS= =
One obtains a so-calledimmed Cayley treeCases of non- F D=1 for D=2,
growing “sites” are encountered, for example, in the growth
of off-lattice DLA clusterq4]. Indeed, near the origin of the demonstrating the existence of a critical fractal dimension
DLA tree (clustep, the growth probability is extremely low D$=2 for fractal trimmed trees. One should remark that the
due to some screening effect of the main growing branchesxistence of such a critical dimensi@f [15] has been also
Other cases of non-growing sites are also encountered ipund for the skeleton of specific trees embedded space
evolution mode_ls of phylo_geneUchke trees where the deaghy Havlin et al. They have found$~1.65 ind=2 for the
ends are associated to extinct spe€8dsin order to generate  -55e of random values aftaken from a power law distribu-
such a tree of a given fractal dimensibn, the number of  {gn [15].
sitesn(g) of thegth shell can be imposed to be a power law (jjj) Diluted trees A third type of fractal tree consists in
modifying the branching rate from one shell to another.
n(g)=zg 4, (2 This third type of tree is of interest for describing natural
patterns. Off-lattice DLA clusters present also a nonuniform
with an exponenD;—1. This power law can be quite gen- branching rate along their tree structui4,5]. A recent
erally imposed in a stochastic manner, i.e., the distribution ofnodel of such a tree growth with two kinds of entitig®.,
nongrowing sites can be disordered on each shell. Howevemagnetic spins having different branching ratgd 6] has
the ration(g+1)/n(g) should be less than or equalzdor =~ shown unexpected behaviors underlying the interest of this
all g values. Thus, one has the following condition for ob-type of tree. The branching rate of such a fractal tfthe
taining a fractaltrimmed tree: so-calleddiluted Cayley tre¢16]) behaves like

4

In(2) [ g Df—1
(Df—1)$|n(—2), 3 2(9)= 9-1 (5
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one considers usually particles randomly distributed on the
sites of a lattice, each site of the lattice being occupied by a
particle with a probabilityk. A phase-transition is classically
observed as a function af Below some threshold,, clus-

ters of connected particles have a finite size, while above
X. the clusters of connected particles can have an infinite
size. Various physical and geometrical quantities diverge at
the critical pointx. following a power law behavior allowing
for the definition of critical exponents. For example, the
mean cluster masS diverges as

FIG. 4. The first through fifth generations of a diluted Cayley S~ xe=x|77 )

tree withD;=2 and branching rate=2. Fractality is obtained by f bel = b th f th
modifying the branching rate on the various shells following Eq.“Or X ?.OW X¢. FOT X aboveX., Ihe average ”.’ass 9 €
). holes,” i.e., the clusters of connected empty sites, diverges

with the same power law. Another quantity of interest is the

for g=2. Since the branching rate is locally an integer num-correlation lengthé, which can be associated to the mean

ber, different integer branching rates should be used in ordet %€ of .the particle clusters beloxg, or _assomateq fo the
to satisfy Eq(5). This can be easily made through a stochasMean size of the hole C'”Stefs aboye This length diverges
tic condition. Figure 4 shows a fractal tree with variable also at the threshols; following a power law
branching rate foD;=2. The skeleton of a diluted Cayley

tree is trivially equivalent to the diluted tree itself, hence

S_
D=Dy. with an exponentv. In the following, we will restrict our

('V,), Exotic trees One should remark that "exotic Cayley calculations to the divergence of these two quantit@suid
trees” can be obtained by tuning a combination of the three

. - o €) atx.. Indeed, two exponents such @sand v are suffi-
parar_neter_sﬂ) the '_‘?_”9”‘ of the brancheéu) th_e gctmty of cient to describe static percolation critical phenomena since
growing sites, andiii) the branching rate. This is, for ex-

ample, relevant for the study of off-lattice DLA clusters other ones can be derived from usual scaling relatighs

[4.5] which present both dangling ends and nonuniform Percolation threshold and exponents are known to be ex-
= P ging actly solved on a few lattices on[y,8]. However, the exact

branching rates along the tree. The tuning of a Combln"’V['Ogolution of the percolation problem can be obtained for the

of the tree parameters 1s, however, 0”‘3"‘.3 the scope of thanley tree. For such a hierarchical lattice, the percolation
paper, which is essentially to present the different fundament-

tal types of regular fractal treg$)—(iii) and their physical dr;:;stiké?]ldnLsmabfeuznﬁtgn O?qfl;hae ngr?sngwg?l;ﬁs/g; tg; coor-
properties.

One should also remark that the above trees of infinite
size present self-similarity on lengths ranging from the
smallest intershell distance to infinity. These fractal tree
should be contrasted with fractal treesfofite size which
are generated by a recursive scaling procedure applied on th
branches and not on the sites. The most well-known fractat?h
tree of finite dimension is the deterministic Mandelbrot-
Viscek tree[17].

§~|XC_X|_V1 (7

X.=1/z. ®)

ﬁt is also known[7] that the critical exponent values are,
spectively,y=1 andv=1 on an ordinary Cayley tree. One
ould note that the value of the exponentorresponds to
e divergence of the correlation length measured along the
tree. By that we mean that the dimensionality of the space
where¢ is measured is not the Euclidian embedding space.

Since the local structur@he connectivity of a stretched

lll. SOME PHYSICAL PROPERTIES tree is equivalent to that of an ordinary Cayley tree, the val-
OF FRACTAL TREES ues of the thresholg, and the values of the exponentsand

From what was described above, it is understood thal for the stretched Cayley tree are the same as for the ordi-

fractal trees with the same fractal dimension can have differp ary Cayley tree. However, the presence of nongrowing sites

ent local structures and skeletons related to their growth cochct;?yvt?]réagggnoggtr;\?i t?/razcsr}:gﬁ trﬁﬁ?ggcg‘?ntrsgrﬁgagfgﬁz

dition. Thus, the physical properties are expected to be dif- ; .
ferent from one type of tree to another. In order to emphasizﬁrOpert'es at the percolation threshold can thus be expected

these possible differences, we have studied two commo or fractal trees of typesil) and(ii).

physical phenomena: the percolation problem and the dis- Let us solve the site-percolation problem on a fractal tree

i with dead ends. For such a trimmed Cayley tree, the prob-
crete self-avoiding wal(SAW) over each type of fractal ability p(g) that a particle on thgth shell is connected by

tree. particles to the root of the tree can be defined recursively by
A. Percolation on fractal trees n(g)
. . . pP(@)=p(g—1) ——=X, €)
Percolation theory considers the spanning of large clusters n(g—1)

in a disordered system, and describes how different points of
a system can be connectgd8|. For percolation problems, which reduces to
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TABLE I. Some geometrical and physical properties for the three different types of fractal trees.

Type of tree Stretched Trimmed Diluted

Construction Order Disorder Disorder

Skeleton dimensioD§ D; 1 for Ds=<2, Dy

D;—1 for D=2

Thresholdx, for site percolation ) 1 1

Percolation mass exponemt 1 D¢ D¢

Percolation correlation length exponent 1 1 1

SAW mean free path gay o 2I'(Ds+1)/In@)° ! o

p(g)=z g°1 x9 (100  walker is stopped afteg successive jumps is thus given by

using Eq.(2). For g tending to infinity, this probability van- n(1)\( n(2) n(g) _n(g+1)
ishes except forx=x,=1. The value of the percolation z J\z n1) z n(g—1) zn(g)

threshold x; is thus quite different from the values for B et
stretched Cayley tred&q. (8)]. The same result is obtained ={z7%(9)—z""9"In(g+1)}. (13
for diluted Cayley trees.

The mean masS of the particle cluster connected to the The summation ofg{z—gn(g)_z—(g+l)n(g+1)} with g

root of the tree is defined by ranging from O to+% gives
+ o0 + o0
S=> p(g)=z>, g°rx9 (1) I'(D;+1)
g=1 g=1 )\SAW:ZW, (14)

and diverges at the critical point=1 following the power

Lilivrﬁrr?; dEgla((ISe): V\;'rtge:nTﬁ)épggr?gy; Dc;né?lttce cage iSOf wherel’(x) is the gamma function. Thus, the mean free path
yiey ) P ajueD Nsaw IS strongly dependent onandD;. Figure 5 presents

obtained for the diluted Cayley trees.This result is quitethe exact value ok (obtained numericallyas a function
original and different from that in the case of stretched Cay- SAW

. " o of D¢ and for various values dof. The black dots denote the
:gy trees for which the critical exponentis independent of upper fractal dimensioD; of these trees. One should remark
f .

Th : L that the largest mean free path is obtained for trees of dimen-
e correlation lengti is given by sionD¢=2 and branching rate=2.

S 79%p(g)  Si7gPrtixe The different behaviors afsay as a function of the tree
2= gﬂc = 300 PR (12 growth illustrate that other physical properties can be ex-
2g-1P(9)  2g-19 pected to have quite different behaviors.

using Eq.(10). It is seen that the correlation lengthdi-
verges at the percolation threshold=1 following the
power law of Eq.(7) with an exponentv=1; this value 50 ' ' ' ‘
independent oD is the same for stretched and diluted Cay-
ley trees. z=2

- . . 40 | .
Above, we have specifically solved the site-percolation 0
problem on a fractal tree. One should remark that bond and z=
. . . . z=4
site percolations are equivalent on such lattices. The thresh- = 34 | =5, ¢
old and exponent values are listed in Table | for each type of&;i
fractal tree. This table emphasizes the fact that the generation
of a fractal tree is the key parameter determining percolation 2.0 N
properties on it. Moreover, we have found that some critical

exponents are a function of the fractal dimensidnof the

tree depending on the type of tree. 1.0 N
B. Discrete self-avoiding walk on fractal trees 0.0 I ! ! L i
This subsection is devoted to the study of a discrete SAW 1.0 15 20 25 30 35 40
on a fractal tree starting from the root. On a stretched Cayley Df

tree or on a diluted Cayley tree, no dangling end can be

found such that a self-avoiding walker never stops. Thus, for FiG. 5. The mean free pathsay as a function ofD; for

such fractal trees, the mean free patty diverges. trimmed Cayley trees as in Fig. 3. Various branching rates are il-
On a trimmed tree, a walker can encounter a dead endustrated. The black dots denote the upper fractal dimerBioof

Then, the walk is stopped there. The probability that athese trees.
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IV. CONCLUSION dimensionD; and branching rate dependent.
In summary, three different techniques for the construc- Table | summarizes the geometrical and physical proper-

. oo : éies of the three different types of fractal trees. Our present
tion of fractal trees of infinite size have been emphasize e .
classification of fractal trees into three clasgsfetched,

Ez\r/% l?ge-ﬁagﬁj %iztéet\igfig’ug'renxrgrend’l::igggtggeiaﬁl\?gntrﬁ_ﬁsreimmed, and dilutedis thus relevant and rationalizes the
: ) P ~en g " notion of fractal trees and that of their skeleton. The mixture
three different types of fractal trees have different local

of the different construction techniques could also lead to
structures and skeletons. fractal trees with both tunable fractal and physical properties
We have solved exactly the percolation problem and the phy prop '

discrete self-avoiding walk for each tree type. The results ACKNOWLEDGMENTS

point out that the physical properties of fractal trees depend

strongly on their construction method. More importantly, we  This work was partially supported through the AR@4-
have shown that the percolation critical exponents are a fun®9/174 contract of the University of Lige. N. V. thanks the
tion of the dimensio; on trimmed and diluted fractal trees Belgium Research Funds for Industry and Agriculture
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