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Construction and properties of fractal trees with tunable dimension:
The interplay of geometry and physics

N. Vandewalle* and M. Ausloos†

SUPRAS, Institut de Physique B5, Sart Tilman, Universite´ de Liège, B-4000 Lie`ge, Belgium
~Received 14 May 1996!

In this paper, we emphasize three different techniques for the growth of fractal trees with a desired fractal
dimensionDf. The three different growths are due to the influence of~i! stretched branches,~ii ! dead ends, or
~iii ! a variable branching rate. Several examples are given. We point out that geometrical and physical prop-
erties~skeleton dimension, percolation exponents, self-avoiding walk! of fractal trees depend strongly on their
type. The most striking result is that the critical exponents at the percolation transition are nonuniversal since
they depend on the tree type. The critical exponents depend onDf for trees of types~ii ! and ~iii !.
@S1063-651X~97!03201-7#

PACS number~s!: 05.40.1j, 61.43.Hv, 68.35.Rh
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I. INTRODUCTION

Loopless branched structures are often encountered in
ture, such as lung, coral, starbust polymers, phylogen
trees, etc. The kinetic growth of such branched structu
with no loop is also used to describe dynamical proces
such as fragmentation@1#, demography@1#, biological evo-
lution @2,3#, off-lattice diffusion-limited aggregation~DLA !
@4,5#, physiology @6#, etc. Branched structures and/or pr
cesses are also used to elaborate mean-field theories su
for percolation@7,8# or for self-organized criticality@9#. In
order to describe these treelike structures in which branch
processes take place, self-similarity and multifractality co
cepts are often used@10#.

The aim of the present paper is essentially to discuss b
geometrical and physical properties of three different ty
of fractal trees, which are constructed through a growth p
cess in high dimensions. The present work rationalizes
notion of fractal trees and emphasizes some interesting
tures.

II. CONSTRUCTION OF FRACTAL TREES

The most well-known tree is probably the Cayley tr
@11#. This tree is generated as follows: the end of ea
branch is agrowth sitefrom whichz branches of unit length
grow out. Repeating indefinitely the latter growth proce
this leads to the formation of a hierarchical structure as sc
matically drawn in Fig. 1 where the branching-growth pr
cess has been started from a single branch. The numb
sitesn(g) in the so-calledgth shell is an exponential func
tion of z, i.e.,n(g)5zg.

One should remark that the notion of distance~also called
the chemical distance! is only defined along the tree an
cannot necessarily be connected with the Euclidian dista
of the embedding space. All trees considered herein ar
Cayley type; i.e., they are embedded in an infinite Euclid
space. Following this point of view, the number of sit
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within a distanceL from the origin of a fractal tree scales a
LDf . The exponentDf is the fractal dimension of the tree an
should be larger than or equal to one. Following this defi
tion of a fractal tree, the Cayley tree has thus an asympt
cally infinite dimensionality in the sense that the total nu
ber of sites within a distanceL from the origin of the tree
increases exponentially withL.

The skeleton of a tree is defined@12# as the set of sites
belonging to the shortest paths from the root of the tree to
sites in a shell at a distanceg. The important parameter cha
acterizing such a skeleton is the fractal skeleton dimens
Df
S @12#. Skeleton substructures are important in characte

ing various physical properties such as diffusion, elastic
and resistivity.

The tree structure is characterized by three essential l
parameters, which are~i! the length of the branches~i.e., the
distance between two neighboring sites!, ~ii ! the activity of
the growth sites, and~iii ! the branching ratez. For the usual
Cayley tree, the branching rate and the length of the s
ments are constant parameters during the whole growth,
the branching takes place on all sites simultaneously.
will show below that by modifying each parameter durin
the tree growth, one can obtain a fractal tree with a des
fractal dimensionDf . The skeletons of the resulting tree
will also be discussed.

(i) Stretched trees. If one deforms the Cayley tree b
stretching the branches, one can obtain a self-similar tre

FIG. 1. The first through fifth generations of an ordinary Cayl
tree with branching ratez52.
94 © 1997 The American Physical Society
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55 95CONSTRUCTION AND PROPERTIES OF FRACTAL . . .
and only if the length of the successive segments connec
the branching points is a geometrical progression with
argumentq>1. Stretched Cayley trees are ordered hierarc
cal structures, which are useful for theoretical developme
as, for example, in the study of nonanomalous diffusion
fractal objects@13#. The chemical dimension or the fract
dimensionDf of a stretched Cayley treeis then given by

Df511
ln~z!

ln~q!
, ~1!

which ranges from 1 to1` for any z values by tuning the
stretching parameterq. Figure 2 exhibits such a stretche
Cayley tree for which the length of the segments is a g
metrical progression of argumentq52. The tree of Fig. 2 is
thus fractal with a dimensionDf52 sincez52. Forq51, a
Cayley tree is obviously recovered. The skeleton of
stretched tree is trivially equivalent to the tree itself. Th
the fractal dimension of the skeletonDf

S5Df is also given by
Eq. ~1!.

(ii) Trimmed trees. In a second type of fractal growt
technique, a branching process with a constant branc
ratez can be considered but sometimes imposingdead ends.
One obtains a so-calledtrimmed Cayley tree. Cases of non-
growing ‘‘sites’’ are encountered, for example, in the grow
of off-lattice DLA clusters@4#. Indeed, near the origin of th
DLA tree ~cluster!, the growth probability is extremely low
due to some screening effect of the main growing branch
Other cases of non-growing sites are also encountere
evolution models of phylogeneticlike trees where the de
ends are associated to extinct species@3#. In order to generate
such a tree of a given fractal dimensionDf , the number of
sitesn(g) of thegth shell can be imposed to be a power la

n~g!5zgDf21, ~2!

with an exponentDf21. This power law can be quite gen
erally imposed in a stochastic manner, i.e., the distribution
nongrowing sites can be disordered on each shell. Howe
the ration(g11)/n(g) should be less than or equal toz for
all g values. Thus, one has the following condition for o
taining a fractal~trimmed! tree:

~Df21!<
ln~z!

ln~2!
, ~3!

FIG. 2. The first through fourth generations of a stretched C
ley tree withDf52 and branching ratez52. Fractality is obtained
by stretching the length of the branches.
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giving an upper limit forDf as a function of the branching
ratioz. Figure 3 shows the first five stages in the construct
of a trimmed Cayley tree. In Fig. 3, the number of branchi
points on successive shells is incremented by one, giving
this tree a dimensionDf52, i.e., the upper limit dimension
for a branching ratez52. One should remark that a simila
‘‘trimmed’’ technique @14,15# has been previously studie
for growing specific fractal trees embedded in a Euclid
space of finite dimensionalityd. The fractal dimension of
these trees is obviously bounded by the space dimension
d in contrast with the present trimmed trees for which t
fractal dimension is bounded by the branching ratez through
Eq. ~3!.

In contrast with the stretched trees, the skeleton o
trimmed fractal tree is not equivalent to the tree due to
presence of dead ends. A previous analytical study@12# has
shown that the dimension of the skeleton is given by

Df
S5H 1 for Df<2

Df21 for Df>2,
~4!

demonstrating the existence of a critical fractal dimens
Df
c52 for fractal trimmed trees. One should remark that t

existence of such a critical dimensionDf
c @15# has been also

found for the skeleton of specific trees embedded ind space
by Havlin et al.. They have foundDf

c'1.65 ind52 for the
case of random values ofz taken from a power law distribu
tion @15#.

(iii) Diluted trees. A third type of fractal tree consists in
modifying the branching ratez from one shell to another
This third type of tree is of interest for describing natur
patterns. Off-lattice DLA clusters present also a nonunifo
branching rate along their tree structure@4,5#. A recent
model of such a tree growth with two kinds of entities~i.e.,
magnetic spins! having different branching rates@16# has
shown unexpected behaviors underlying the interest of
type of tree. The branching rate of such a fractal tree~the
so-calleddiluted Cayley tree@16#! behaves like

z~g!5S g

g21D
Df21

~5!

-

FIG. 3. The first through fifth generations of a trimmed Cayl
tree withDf52 and branching ratez52. Fractality is obtained by
imposing a power-law distribution of sites per shell. In particu
here the number of branching points on successive shells is in
mented by one, giving a fractal dimensionDf52.
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96 55N. VANDEWALLE AND M. AUSLOOS
for g>2. Since the branching rate is locally an integer nu
ber, different integer branching rates should be used in o
to satisfy Eq.~5!. This can be easily made through a stoch
tic condition. Figure 4 shows a fractal tree with variab
branching rate forDf52. The skeleton of a diluted Cayle
tree is trivially equivalent to the diluted tree itself, hen
Df
S5Df .
(iv) Exotic trees. One should remark that ‘‘exotic Cayle

trees’’ can be obtained by tuning a combination of the th
parameters:~i! the length of the branches,~ii ! the activity of
growing sites, and~iii ! the branching ratez. This is, for ex-
ample, relevant for the study of off-lattice DLA cluste
@4,5#, which present both dangling ends and nonunifo
branching rates along the tree. The tuning of a combina
of the tree parameters is, however, outside the scope of
paper, which is essentially to present the different fundam
tal types of regular fractal trees~i!–~iii ! and their physical
properties.

One should also remark that the above trees of infin
size present self-similarity on lengths ranging from t
smallest intershell distance to infinity. These fractal tre
should be contrasted with fractal trees offinite size, which
are generated by a recursive scaling procedure applied o
branches and not on the sites. The most well-known fra
tree of finite dimension is the deterministic Mandelbro
Viscek tree@17#.

III. SOME PHYSICAL PROPERTIES
OF FRACTAL TREES

From what was described above, it is understood t
fractal trees with the same fractal dimension can have dif
ent local structures and skeletons related to their growth c
dition. Thus, the physical properties are expected to be
ferent from one type of tree to another. In order to emphas
these possible differences, we have studied two comm
physical phenomena: the percolation problem and the
crete self-avoiding walk~SAW! over each type of fracta
tree.

A. Percolation on fractal trees

Percolation theory considers the spanning of large clus
in a disordered system, and describes how different point
a system can be connected@7,8#. For percolation problems

FIG. 4. The first through fifth generations of a diluted Cayl
tree withDf52 and branching ratez52. Fractality is obtained by
modifying the branching rate on the various shells following E
~5!.
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one considers usually particles randomly distributed on
sites of a lattice, each site of the lattice being occupied b
particle with a probabilityx. A phase-transition is classicall
observed as a function ofx. Below some thresholdxc , clus-
ters of connected particles have a finite size, while ab
xc the clusters of connected particles can have an infi
size. Various physical and geometrical quantities diverge
the critical pointxc following a power law behavior allowing
for the definition of critical exponents. For example, t
mean cluster massS diverges as

S;uxc2xu2g ~6!

for x below xc . For x abovexc , the average mass of th
‘‘holes,’’ i.e., the clusters of connected empty sites, diverg
with the same power law. Another quantity of interest is t
correlation lengthj, which can be associated to the me
size of the particle clusters belowxc , or associated to the
mean size of the hole clusters abovexc . This length diverges
also at the thresholdxc following a power law

j;uxc2xu2n, ~7!

with an exponentn. In the following, we will restrict our
calculations to the divergence of these two quantities (S and
j) at xc . Indeed, two exponents such asg andn are suffi-
cient to describe static percolation critical phenomena si
other ones can be derived from usual scaling relations@7#.

Percolation threshold and exponents are known to be
actly solved on a few lattices only@7,8#. However, the exact
solution of the percolation problem can be obtained for
Cayley tree. For such a hierarchical lattice, the percolat
threshold is a function of the branching ratez ~ or the coor-
dination numberz11) only and is trivially given by

xc51/z. ~8!

It is also known@7# that the critical exponent values ar
respectively,g51 andn51 on an ordinary Cayley tree. On
should note that the value of the exponentn corresponds to
the divergence of the correlation length measured along
tree. By that we mean that the dimensionality of the sp
wherej is measured is not the Euclidian embedding spa

Since the local structure~the connectivity! of a stretched
tree is equivalent to that of an ordinary Cayley tree, the v
ues of the thresholdxc and the values of the exponentsg and
n for the stretched Cayley tree are the same as for the o
nary Cayley tree. However, the presence of nongrowing s
or the variation of the branching ratez along the tree change
locally the connectivity. A slight difference in some of th
properties at the percolation threshold can thus be expe
for fractal trees of types~ii ! and ~iii !.

Let us solve the site-percolation problem on a fractal t
with dead ends. For such a trimmed Cayley tree, the pr
ability p(g) that a particle on thegth shell is connected by
particles to the root of the tree can be defined recursively

p~g!5p~g21!
n~g!

n~g21!
x, ~9!

which reduces to

.
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TABLE I. Some geometrical and physical properties for the three different types of fractal trees.

Type of tree Stretched Trimmed Diluted

Construction Order Disorder Disorder
Skeleton dimensionDf

s D f 1 for Df<2, Df

D f21 for Df>2
Thresholdxc for site percolation 1/z 1 1
Percolation mass exponentg 1 Df D f

Percolation correlation length exponentn 1 1 1
SAW mean free pathlSAW ` zG(Df11)/ln(z)Df11 `
r
d
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p~g!5z gDf21xg ~10!

using Eq.~2!. For g tending to infinity, this probability van-
ishes except forx5xc51. The value of the percolation
threshold xc is thus quite different from the values fo
stretched Cayley trees@Eq. ~8!#. The same result is obtaine
for diluted Cayley trees.

The mean massS of the particle cluster connected to th
root of the tree is defined by

S5 (
g51

1`

p~g!5z(
g51

1`

gDf21xg ~11!

and diverges at the critical pointxc51 following the power
law of Eq. ~6! with an exponentg5Df in the case of
trimmed Cayley trees. The same exponent valueg5Df is
obtained for the diluted Cayley trees.This result is qu
original and different from that in the case of stretched C
ley trees for which the critical exponentg is independent of
Df .

The correlation lengthj is given by

j25
(g51

1` g2p~g!

(g51
1` p~g!

5
(g51

1` gDf11xg

(g51
1` gDf21xg

~12!

using Eq.~10!. It is seen that the correlation lengthj di-
verges at the percolation thresholdxc51 following the
power law of Eq.~7! with an exponentn51; this value
independent ofDf is the same for stretched and diluted Ca
ley trees.

Above, we have specifically solved the site-percolat
problem on a fractal tree. One should remark that bond
site percolations are equivalent on such lattices. The thr
old and exponent values are listed in Table I for each type
fractal tree. This table emphasizes the fact that the genera
of a fractal tree is the key parameter determining percola
properties on it. Moreover, we have found that some criti
exponents are a function of the fractal dimensionDf of the
tree depending on the type of tree.

B. Discrete self-avoiding walk on fractal trees

This subsection is devoted to the study of a discrete S
on a fractal tree starting from the root. On a stretched Cay
tree or on a diluted Cayley tree, no dangling end can
found such that a self-avoiding walker never stops. Thus,
such fractal trees, the mean free pathlSAW diverges.

On a trimmed tree, a walker can encounter a dead e
Then, the walk is stopped there. The probability that
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walker is stopped afterg successive jumps is thus given by

S n~1!

z D S n~2!

z n~1! D •••S n~g!

z n~g21! D S 12
n~g11!

zn~g! D
5$z2gn~g!2z2~g11!n~g11!%. ~13!

The summation ofg$z2gn(g)2z2(g11)n(g11)% with g
ranging from 0 to1` gives

lSAW5z
G~Df11!

ln~z!Df11 , ~14!

whereG(x) is the gamma function. Thus, the mean free pa
lSAW is strongly dependent onz andDf . Figure 5 presents
the exact value oflSAW ~obtained numerically! as a function
of Df and for various values ofz. The black dots denote the
upper fractal dimensionDf of these trees. One should remar
that the largest mean free path is obtained for trees of dim
sionDf52 and branching ratez52.

The different behaviors oflSAW as a function of the tree
growth illustrate that other physical properties can be e
pected to have quite different behaviors.

FIG. 5. The mean free pathlSAW as a function ofDf for
trimmed Cayley trees as in Fig. 3. Various branching rates are
lustrated. The black dots denote the upper fractal dimensionDf of
these trees.
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IV. CONCLUSION

In summary, three different techniques for the constr
tion of fractal trees of infinite size have been emphasi
here. So-called stretched, trimmed, and diluted Cayley tr
have been studied. Various examples have been given.
three different types of fractal trees have different lo
structures and skeletons.

We have solved exactly the percolation problem and
discrete self-avoiding walk for each tree type. The resu
point out that the physical properties of fractal trees dep
strongly on their construction method. More importantly, w
have shown that the percolation critical exponents are a fu
tion of the dimensionDf on trimmed and diluted fractal tree
and are independent of this parameter for stretched tr
Moreover, a SAW on a trimmed Cayley tree is both frac
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dimensionDf and branching ratez dependent.
Table I summarizes the geometrical and physical prop

ties of the three different types of fractal trees. Our pres
classification of fractal trees into three classes~stretched,
trimmed, and diluted! is thus relevant and rationalizes th
notion of fractal trees and that of their skeleton. The mixtu
of the different construction techniques could also lead
fractal trees with both tunable fractal and physical propert
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